
 140

EVENT-DRIVEN ARCHITECTURE AND SOA - ALLIES OR

ENEMIES?

Bogdan Pilawski

Bank Zachodni WBK, Strzegomska 8-10, 53-611 Wroclaw, Poland

e-mail: bogdan.pilawski@bzwbk.pl

ABSTRACT:

The specialised software used to control automated plants and systems (e.g. Fly-By-Wire and

aircraft flight control systems) was based on handling events from its outset. Nowadays there

are more and more business conditions (business events) requiring immediate attention to

cope with (e.g. on-line fraud). That brings the need to include event-handling concepts and

solutions into business software applications. Software suppliers are taking different stances

on that, and so are the directions and advise from research companies.

This paper undertakes to review the matter in short, concentrating on whether concepts of

Service Orientated Architecture and Event Driven Architecture are separate things, or if they

can be brought and act together.

KEYWORDS:

Service Orientated Architecture, Enterprise Service Bus, event, Event Driven Architecture,

event handling, event processing, business process, business service

INTRODUCTION

The IT systems have been for many years designed to perform typical tasks which, for the

purpose of this paper, can be divided into three major groups:

(i) Systems performing mass calculations, where the amount of input data is

limited and so are the results returned. The processing of the said input data is

usually long-lasting and processor intensive;

(ii) Systems processing mass data, where the amount of input data is high, usage

of processing power is limited, and the volume of output data, whether its

database updates or reports of various shape, is also huge. This activity can be

performed on-line or in a batch manner.

(iii) Systems controlling the operation of industrial systems to ensure these behave

up to the expectation, and to prevent any malfunctions, some of which, if only

allowed to take place, might be of disastrous consequences in terms of loss of

live, negative social impact or financial loss.

The systems of category (iii) above perform most (if not all) of their actions on-line,

immediately accepting signals from the controlled plant, and processing them and issuing

 141

commands to keep it operating up to the specification. Most of those plant-generated feedback

signals indicate that something has happened, what requires attention of humans or of

automated device or process. The very reason for such an indicating signal is referred to as

“an event”. When issued, the event must be dealt with immediately, otherwise the controlled

plant may stop working properly, cease to work at all, or even go totally astray. It is well

beyond comprehension to assume that – for example - a signal on a to high steam pressure in

a power generating plant will be stored within a system until the daily report generation time

comes, and this signal will be conveyed to a person responsible along with his/her daily report

next day, and on that basis he/she will decide what action to take.
1

The pace with which the nowadays business is run, more and more often requires for various

decisions and resulting actions to be taken immediately, or almost immediately, just after

business–related event has taken place. The faster the appropriate action, the better are its

business results, whether the action itself is preventive or supportive in nature. The business

requirement of this kind calls for an IT solution capable of conveying events to their

recipients (these could be many) without any delay. The solution sought however must also

ensure that the already existing IT functionality will not be affected by it.

To the extent this concept has been already present in numerous business applications,

however the way it has been adopted
2
 is to the contrary with latest concepts, thus preventing

the implementation of methodologies like SOA, or its underlying idea of Enterprise Service

Bus (ESB).

EVENT-DRIVEN ARCHITECTURE

The term “Event-Driven Architecture” (EDA) has been coined and introduced by Gartner in

2003, to describe a new design paradigm based on transmission of events between decoupled

software components and services [Maréchaux_2006].

As defined in [Michelson_2006] paper “an event is a notable thing that happens inside or

outside your business. An event (business or system) may signify a problem or impending

problem, an opportunity, a threshold, or a deviation”. What is even more important – this

paper comes with the observation, that commonly the term “event” is often used

interchangeably to refer to both the specification of the event, and also to each individual

occurrence of the event.

The [Michelson_2006] paper distinguishes three main styles of event processing: simple,

stream and complex.
3

In simple event processing, when the event happens it initiates some downstream action or

series of actions. It is used to drive the real-time flows to eliminate lag time and thus – to

reduce cost. Stream event processing is used to propagate (stream) events to all interested

1
 However the system in question cannot over-react, calling for attention anytime the steam pressure goes up; to

illustrate that, the [Chandy_2007d] paper comes with an nature example of zebra, which will die if it doesn’t run

away from lion (reaction to the event of spotting the lion), but it will also die from waste of energy, if it

continuously keeps running away from any non-threat condition
2
 usually the event-driven element has been somehow appended to otherwise ready and working business

application
3
 another (succesful) attempt to come up with deffinitions from the the area of events was made in the

[Chandy_2007a] paper

 142

parties, which subscribed to this notification, usually to support in-time decision making.

Complex event processing (CEP) attempts to evaluate a confluence of events, the correlation

of which may be casual, temporal or spatial. This is used to detect and to respond to business

anomalies, threats, and opportunities.

Within event-driven architecture an event becomes disseminated to all parties interested

(whether human or automated), and they in turn evaluate that event and decide if any action is

necessary. The creator of the event has no knowledge of the event’s subsequent processing, or

of the parties interested in it [Michelson_2006].

Another classification has it that events may be simple, resulting from a single triggering

condition becoming satisfied, or they may be complex in nature, where the final event issued

results from a combination of multiple simple events. The occurrence of the latter may take

place in parallel, or it may be the outcome of a cascading process.

SERVICE ORIENTATED ARCHITECTURE (SOA)

SOA is currently the culmination of a software development, it embraces procedure

composition, OOP, client/server and their off-springs, from programming perspective - all

based on procedure or function call. These calls are request/response in nature, and work in

synch by bringing a kind of response to each request issued [Chandy_2007d]. All those

components keep waiting doing nothing, until they receive a request for service.

To the contrary, the event-driven components continuously listen and sense, ready to respond

to the signal or the condition, occurrence of which they are capable to discover.

The basic difference however between running services and handling events is, that a service

always constitutes a request-response mechanism, i.e. the party initiating the service requests

another party – a service provider, to fulfil the requirements of the request, while events are

always based on unidirectional flow, just carrying the message of certain meaning, destined

for un-named recipients [see: Maréchaux_2006].

The features of those two – SOA and EDA - are compared in table 1.

Table 1 SOA and EDA features

SOA EDA

Service Event stream

Binding Subscription

Contract Specification of event stream generation

Service provider Event stream publisher

Service consumer Event stream subscriber

Service broker Event stream broker

Source: based on [Chandy_2007b]

Event-driven business processes and event-driven application systems help enterprises to

react quickly and precisely to rapidly changing conditions [Schulte_2003b]. So far events

have been widely used in system software, such as operating systems and network

management systems. When used in business applications, they have been mostly limited to

the so called “simple events” [Schulte_2003b].

 143

The paper [Schulte_2003b] also has it, that there are five forces which are driving the

adoption of the concept of events in business applications. These are:

1. The demand of business strategies,

2. The broad-scale migration to service-oriented architecture,

3. Vendors offering enabling tools,

4. Emerging standards,
4

5. Hardware and network improvements.

Various papers presenting characteristics of event-driven architectures agree in principle, but

they have different approach to the matter of publish/subscribe messaging. Most authors place

it under EDA umbrella, while others (especially [Chandy_2007c]) perceive EDA as much

more powerful, than the traditional publish-subscribe architecture, because of the flexibility

and dynamic nature of contracts (specifications) between subscriber (client) and publisher

(server).

To dispel any doubts one also has to stress, there is no need to run Web Services to cope with

the events. Event-driven and SOA applications can be implemented with Web Services, but

neither requires web services to be present. SOA message exchange patterns (MEP) already

enable SOA request/reply or one-way event delivery. While in place however, ESB can

extend simple, point-to-point processing of events with its services capable of providing
5
:

(i) Transport services to ensure delivery of message among the processes

interconnected via ESB,

(ii) Event services to detect, trigger and disseminate events,

(iii) Mediation services to ensure matching of protocols and to offer message content

transformation if required.

ALLIES OR ENEMIES?

While ESB allows for the implementation of both the SOA and the EDA concepts, EDA is

sometimes also referred to as “event-driven SOA” [Maréchaux_2006]. What’s significant –

both Gartner papers quoted here - [Schulte_2003a] and [Schulte_2003b] seem to insist, EDA,

despite being part of widely viewed SOA, constitutes itself a separate category of system

architecture. It supplements SOA in a way, rather than being inherent part of it.

According to Gartner, the concept of events is the key factor to enable revolutionary

improvements in business processes. In 2003 Gartner insisted these strategies are already

promoted under labels such as “zero-latency enterprise”, “the real-time enterprise” “the

event-driven enterprise” and “On Demand Computing”
6
 [Schulte_2003b]. Five years which

passed since then show, not much of general progress in this field has been achieved, but that

does not mean, the businesses and other users are not embracing event-driven architectures at

4
 the list of existing (as per March, 2007) EDA/CEP standards is presented in [SOA_2007]; the Gartner 2003

paper [Schulte_2003b] however, called these standards “incomplete”.
5
 Paper [Maréchaux_2006] states there is no official specification the ESB implementation, but to be able to

facilitate the integration of large-scale heterogeneous applications it must at least provide transport, event and

mediation services
6
 IBM’s advertising slogan

 144

all. In financial sector they’re forced into it by facts of life, like growing on-line fraud, and

also – some regulatory requirements [BEA_2007].

Position similar to Gartner, separating to the extent EDA from SOA is taken also by Patricia

Seybold Group [see: Michelson_2006], and is also presented in [Hoof_2006] paper. The latter

however sees EDA as representing a business process chain, while SOA keeps command and

control of what’s going on technically. This view is presented in picture 1. The processes

there are clearly separated from each other, and events provide the only link between them,

carrying the process completion signal which becomes the triggering or invoking factor for

the process to follow.

Picture 1. EDA versus SOA

Source: [Hoof_2006]

Entirely opposite stance has been taken by Forrester Research. From the beginning of

considering EDA they insisted SOA and EDA must be seen as a one whole, and not separated

in any way. They defend their position with the following: “...vendors and pundits are

discussing event-driven architecture (EDA) as a new priority and a “next big thing”

requiring a separate architectural focus. To Forrester, this is a potentially costly distraction.

Event-driven concepts are good and necessary, but setting up an “EDA versus SOA”

distinction pulls attention away from the fundamental architectural goal of building a unified

application infrastructure and a coherent set of application patterns delivered on that

infrastructure.” [Heffner_2004].

In Forrester’s view event handling capabilities should be treated as part of a full-featured

SOA, and these should include other capabilities, such as policy-based processing,

multichannel coordination, filtered message delivery, real-time business management, to

name just the few most important. These all are contained within the concept of Digital

Business Architecture, Forrester’s long advocated idea of how to combine all the latest in IT

architecture under one umbrella [see also: Heffner_2006]. This concept in relation to event

 145

handling is illustrated on picture 2. It also shows the components embraced within this idea,

and how do they relate to each other.

Picture 2. Forrester’s functions, flows, and infrastructure for digital business event processing

Source: [Heffner_2006]

Forrester’s approach seems to be more holistic in nature, when compared with Gartner’s

view. To the extent it results from what can be called “Forrester’s event philosophy”, which

differs significantly from approach taken by Gartner and others. This is explained in more

detail in the [Brett_2008] paper. The differences begin with the very definition of event

which, as presented by Forrester, sees a number of categories which can be applied (simple.

Complex, IT-related, non-IT etc.). Forrester insists the design and development of event

handling software requires different skills than conventional design and programming.

CONCLUSIONS

Event driven architectures are nowadays present in the offer of almost any major IT market

player. These architectures however are perceived differently, and there is no solution likely

to help to answer the title question of this paper. While SOA and ESB are present in any

architecture offered, from the perspective of events their role seems to be more instrumental

in nature, rather than dealing with the real thing.

The [Neon_2003] paper presents IBM mainframe-related position, which seems to be limited

to replacing “pull” approach of information dissemination, with “push”, meaning the fact of

occurrence of pre-defined events will be propagated to interested parties instead of making it

just only available to them. Another IBM paper [Maréchaux_2006] refers to EDA perceived

as “event-driven SOA”.

Oracle’s approach [see: Jellema_2007] is similar, however more mature, since it concentrates

on the role of the Enterprise Service Bus which becomes the only means of liaison between

 146

business processes generating events processed by business services, and these business

services leading to another set of business processes.

SAP seems to limit events to business workflow-like tasks [see: Hilpert_2007], what makes it

similar to “pure” Forrester’s model presented earlier in this paper.

Interesting view on events has been explained in detail in the [Hohpe_2006] paper. Hohpe,

who at the time of writing was one of the software architects with Google, takes very

technical stance and calls EDA just “programming without a call stack”.

All the above said views and concepts are somehow embedded within various kinds of

middleware of wider than only EDA functionality
7
. Basically different position on that has

been taken by BEA, which in 2007 has come up with a set of tools dedicated to processing

and handling events [see: BEA_2007]. Their approach seems to be mature and very much

related to the current business needs, resulting, among others, from recent regulatory

requirements to financial institutions. Despite this close relationship with current business

needs, BEA’s proposal is far from convenient shortcuts, which might easily result should they

had taken more opportunistic approach. The stance taken by BEA in relation to financial

institutions seems to reply somehow to Forrester’s prediction of 2006: “While a dedicated

event-driven architecture will not be necessary, banks must take precautions so that their

platforms can take care of events within the framework of their SOA” [Hoppermann_2006].

Also the organisations like OASIS, W3C and WS-I are joining in and taking steps towards

providing more standards to help event-driven architecture applications to be able to talk to

each other. The main areas addressed here are [Schulte_2003b]:

(i) Guaranteed delivery (WS-Reliability and WS-Reliable Messaging),

(ii) Notification specification,

(iii) WS-Addressing (publish-and –subscribe),

(iv) WSDL – standarisation on metadata.

All that however is far from a kind of soothsaying that in the near future EDA is to become

“next big thing” (as coined by Forrester) and to take over, sending other methodologies and

techniques for years present in IT to the history. Its entirely to the contrary: “..the most viable,

agile architectures will be comprised of a blend of architecture strategies, including service-

oriented architecture, process-based architecture, federated information, enterprise

integration and open source adoption. The best choices are the ones that match your

business!” [Michelson_2006].

7
 the particular role of event-based messaging middleware is discussed in more detail in [Rozsnyai_2007] paper

 147

LITERATURA

[BEA_2007] BEA WebLogic Event Server 2.0 First and Only Java Container for High-

Performance Event-Driven Applications, BEA, 2007

[Brett_2008] Brett, Charles, What Are Events, And Why Do They Matter To Application

Development Proffessionals?, Forrester Research, 2008

[Chandy_2007a] Chandy, Mani K., Ramo, Simon, Schulte, Roy W, What is Event Driven

Architecture (EDA) and Why Does it Matter?, http://complexevents.com,

12/2007

[Chandy_2007b] Chandy, Mani K., Carmona, Jonathan L., Service-Oriented Architecture:

Event Web Building Block, http://www.developer.com, 12/2007

[Chandy_2007c] Chandy, Mani K., Carmona, Jonathan L., Event-Driven Architecture vs.

Publish-Subscribe Systems, www.developer.com, 2007

[Chandy_2007d] Chandy, Mani K., Carmona, Jonathan L., The Event Web: Sense and Respond

to Critical Conditions, www.developer.com, 2007

[Heffner_2004] Heffner, Randy, The Unification Of SOA And EDA And More (How A

Complete SOA Supports Event-Driven Applications), Forrester Research,

2004

[Heffner_2006] Heffner, Randy, EDA, SOA 2.0, And Digital Business Architecture, Forrester

Research, 2006

[Hilpert_2007] Hilpert, Wolfgang, Volmering, Thomas, Road Map for BPM and Event-

Driven Architecture, SAP AG, 2007

[Hohpe_2006] Hohpe, Gregor, Programming Without a Call Stack-Event-driven

Architectures, www.eaipatterns.com, 2006

[Hoof_2006] Hoof, Jack von, How EDA extends SOA and why it is important, http://soa-

eda.blogspot.com, 2006

[Hoppermann_2006] Hoppermann, Jost, The Next-Generation Banking Platform, Forrester

Research, 2006

[Jellema_2007] Jellema, Lucas, Building Event-Driven Architecture with an Enterprise

Service Bus, Oracle Corp., 2007

[Maréchaux_2006] Maréchau, Jean-Louis, Combining Service-Oriented Architecture and Event-

Driven Architecture using an Enterprise Service Bus, IBM, 2006

[Michelson_2006] Michelson, Brenda M., Event-Driven Architecture Overwiev, Patricia Seybold

Group, Boston, 2006

[Neon_2003] A strategy for Implementing Event-Driven Architecture on IBM z/OS

Mainframes, Neon Sytems Inc, 2003

[Rozsnyai_2007] Rozsnyai, Szabolcs at al., Concepts and Models for Typing Events for Event-

Based Systems, ACM paper 978-1-59593-665-3, 2007

[Schulte_2003a] Schulte, Roy W., Natis, Yefim V., Event-Driven Architecture Complements

SOA, Gartner Research, 2003

[Schulte_2003b] Schulte, Roy W., The Growing Role of Events in Enterprise Aplications,

Gartner Research, 2003

[SOA_2007] Existing EDA/CEP Standards v.2.1, http://soa.omg.org, March 2007

