
35

DEVELOPING A NEW DAQ SOFTW ARE FOR
THE COMPASS EXPERIMENT
Vladimír Jarý 1, Tomáš Liška, Miroslav Virius

Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering
Vladimir.Jary@cern.ch , Tomas.Liska@cern.ch , Miros-
lav.Virius@cern.ch

ABSTRACT:

COMPASS is a particle physics experiment situated on the SPS accelerator in the CERN
laboratory. The existing data acquisition system of the experiment uses standard servers and
the DATE software. With the increasing data rate and the age of the hardware, the failure rate
and the dead time of the system is also considerably increasing, thus a new DAQ system
based on a custom hardware is being developed.

At first, the current DAQ system is discussed, and then the overview of the software for
the new system is analyzed. Finally, the DIM library that is used for communication between
nodes is presented and benchmarked.

KEYWORDS:

COMPASS, data acquisition, DATE, networking

INTRODUCTION

Modern particle physics experiment produces enormous quantities of data. It is not possible to
analyze data online, therefore data acquisition systems are used to select, readout, digitize,
filter, and store physically interesting events. This paper focuses on the data acquisition sys-
tem of the COMPASS experiment.

At first, the physical program of the experiment is briefly introduced. COMPASS uses the
ALICE DATE package for the data acquisition (DAQ), thus this package is described in more
details. DATE software runs on the standard x86-compatible hardware. The dead time of the
system increases with increasing trigger rate, thus a development of the custom FPGA-based
hardware for DAQ has started. It has been decided to replace the DATE package with brand
new software.

COMPASS EXPERIMENT

The COMPASS, which stands for the Common muon and proton apparatus for structure and
spectroscopy, is a fixed target experiment running at the Super proton synchrotron (SPS) par-
ticle accelerator at the CERN laboratory in Geneva, Switzerland [1]. The scientific program,
which includes experiments with the hadron and the muon beam, has been approved by the
CERN scientific council in 1997. After several years of preparations, construction, and com-
missioning, the data taking started in 2002. Currently, a proposal for the second phase of the
experiment (see COMPASS-II [2]) has been submitted to the scientific council for approval.
The second phase would continue at least until 2015, if approved by the council.

1 Corresponding author

36

When the beam particles interact with the polarized target, secondary particles are pro-
duced. These secondary particles are detected in a system of detectors that form the COM-
PASS spectrometer (see Figure 1). Detectors are used to track particles, to identify particles,
and to measure energy of particles. Particle tracking is performed mainly by various wire
chambers. Particle identification is implemented by the muon filters and the Cherenkov detec-
tors. Finally, the deposited energy is measured by the electromagnetic (for electrons and pho-
tons) and the hadronic (for hadrons) calorimeters. Set of data describing the flight of particles
through the spectrometer is known as an event. Size of the typical event amounts to 35 kB.

Figure 1: The layout of the COMPASS spectrometer, image taken from [2]

The SPS accelerator works in 16.8 s long cycles that consists of 12 s of acceleration and 4.8 s
of particle extraction. The extraction period is also known as the spill (burst). The cycle of the
accelerator has strong impact on the design of the DAQ system.

CURRENT DATA ACQUISITION SYSTEM

The DAQ system used by the COMPASS experiment consists of several layers [9][12]. On
the lowest level, the detector frontend (primary) electronics lie. The primary electronics con-
tinuously preamplify, discriminate, and digitize data from detectors. There are approximately
250000 data channels; data streams from multiple channels are concentrated into the concen-
trator modules called GeSiCA and CATCH. The GeSiCA (GEM and Silicon Control and Ac-
quisition) modules serve the GEM and silicon detectors that are characterized by a high data
rate. The CATCH (COMPASS Accumulate, Transfer and Control Hardware) modules per-
form the readout of the other detectors. Although the frontend electronics constantly produce
data, the readout by the concentrator modules is performed only when the trigger control sys-
tem TCS selects physically interesting event (the decision is based on the amount of deposited
energy in calorimeters and on the signals from hodoscopes). Additionally, the TCS distributes
the timestamp and the event identification. Concentrator modules create data blocks called
subevents by assembling data from multiple detector channels corresponding to the same trig-
ger and appending the subevent header with metainformation provided by the TCS.

The subevents are transferred into the next processing stage, the readout buffers (ROB),
using the optical link S-Link. ROBs are standard servers equipped with 4 spillbuffer PCI
cards. Each spillbuffer has 512 MB of onboard memory which serves as a buffer for incoming
data: it is being filled during bursts and it is being continuously unloaded into the main mem-
ory (RAM) of the ROB. The ROB layer uses the cycle of the SPS accelerator to reduce the
data rate to the higher processing stages to one third of the onspill rate. From the ROB layer,
the subevents are pushed into the next stage which is composed of computers called event

37

builders (EVB). ROBs and EVBs are connected into the Gigabit Ethernet network. Event
builders use the information from the subevent headers to create full events and catalog files
with metainformation. The catalog files are stored into the ORACLE database, the events are
sent to the CERN tape permanent storage CASTOR after some delay. Remaining CPU power
of the event builders is dedicated to the event sampling and event filtering.

The DAQ system consists of the custom hardware and the industry standard components.
For example, the spillbuffer PCI cards have been developed at the Munich Technical Univer-
sity for the COMPASS experiment; the S-Link technology has been developed for the AT-
LAS experiment. On the other hand, ROBs and EVBs are standard, x86 compatible servers.

DATA ACQUISITION SOFTWARE

The COMPASS DAQ software is based on the modified DATE (Data Acquisition and Test
Environment) package [3] maintained by the collaboration of the ALICE experiment. The
DATE functionality includes data flow control, run control, event sampling, interactive con-
figuration, or information reporting. The system configuration and software logs are handled
by the MySQL database [5][7]. Additionally, the DATE also defines the data format that
represents events and subevents. The DATE is very scalable system; it can perform data ac-
quisition on the small laboratory systems with only one computer, on the other hand it runs
also at the ALICE experiment with hundreds of computers.

The DATE is written (mainly) in the C language; the requirements on the DAQ hardware
are following: each processor involved in the system must be x86–compatible, each processor
must be running (32-bit) GNU/Linux operating system, and all processors must be connected
to the same network and must support the TCP/IP stack.

The DATE divides processors involved in the DAQ into two main categories: the LDCs
and the GDCs. The LDC (Local Data Concentrator) performs the readout of event fragments.
Depending on the configuration, the subevents are either saved directly on the LDC, or send
over the network to some GDC. The GDC (Global Data Collector) performs the event build-
ing. The DATE supports load balancing of GDCs through the Event Distribution Manager
(EDM) agent. If the EDM is not used, event fragments are distributed to GDCs using a round
robin algorithm. Clearly, the LDCs correspond to the readout buffers and the GDCs to the
event builders in the COMPASS terminology.

Several additions to the DATE package have been implemented for the needs of the
COMPASS experiment. E.g., the program COOOL (COMPASS Object Oriented Online) is
analyzing part of the data online on one event builder. The results presented in a form of the
ROOT histograms are used by the shift crew to monitor the detector performance. To reduce
the amount of events stored to the tapes, the online filter program, called Cinderella [11], has
been developed. Online filter can be regarded as a high level trigger, it rejects physically unin-
teresting events. Electronic logbook is a tool used to store metainformation about runs and
spills. Most of the information (e.g. the run list) is added automatically by the DATE system
but a shift member can also add comments manually. The logbook is stored in the MySQL
database; users can browse it using the web interface based on the PHP language.

NEW DATA ACQUISITION ARCHITECTURE

During the first year of the data-taking (2002), 260 TB of data have been recorded. During the
2004 Run, the DAQ system recorded 508 TB of data [1][9][11][12]. The increase is caused by
increased number of detector channels and increased trigger rate. However, increasing the
trigger rate also increases the DAQ dead time. The dead time is defined as a ratio between the
time when the system is busy (i.e. it cannot process any new events) and the total time. The
dead time increased to 20% in the 2010 Run, this means that one fifth of the beam time was

38

wasted. Additionally, as the hardware gets older, the failure rate also rises. A research and
development of the new DAQ architecture that would overcome the aforementioned problem
has started.

The new DAQ system would perform the readout and the event building by a dedicated
custom hardware based on the Field Programmable Gate Array (FPGA) integrated cir-
cuits [10]. This would greatly reduce the number of components involved in the data acquisi-
tion and consequently, the reliability would be increased. Additionally, the existing readout
buffers and event builders could be used for another tasks, e.g. for the filtering of events.
Since the event building would be done by the hardware, the run control and the monitoring
would be the main tasks of the DAQ software.

We have evaluated the possibility of using the DATE package for the new DAQ sys-
tem [8]. The DATE is too complex software for the needs of the proposed architecture. Addi-
tionally, DATE requires x86 compatible hardware. Thus, it has been decided to develop cus-
tom control and monitoring software. On the other hand, some components (e.g. a logbook) of
the DATE package could be reused after small modifications. Furthermore, the data structures
used for the events must remain unchanged because of the compatibility with programs for
the offline analysis. Also the compatibility with the detector control system DCS must be re-
tained. The DATE represents the entities involved in the DAQ (ROBs, EVBs, EDM, …) by
the finite state machines implemented in the State Management Interface (SMI++) frame-
work [6]. The communication between the state machines is based on the Distributed Infor-
mation Management (DIM) library [4] which is included in the SMI++ framework. The DIM
also intermediates the communication with the DCS system, therefore the DIM library should
be used in the new DAQ software.

EVALUATION OF THE DIM LIBRARY

Originally, the DIM has been developed for the needs of the DELPHI experiment at CERN,
today it is used at LHC experiments. The DIM library provides functionality for the asyn-
chronous, one to many communication in the heterogeneous network environment. Based on
the TCP/IP, it is running under GNU/Linux, Windows, Solaris, Darwin, VMS, VxWorks, and
other operating systems. Interfaces for C, C++, Java (through Java Native Interface), FOR-
TRAN, and Python languages are available. The communication system consists of the DIM
name server (DNS), the publishers (servers), and the subscribers (clients).

Figure 2: The functionality of the DIM-based communication according to [4]

39

Information services are characterized by a unique name. When a publisher wishes to publish
a new service, it contacts the DIM name server (see Figure 2). The DNS registers the service
name, the service format, and the address of the publisher. When a subscriber wishes to sub-
scribe to some service, it sends request with the service name to the DNS which returns the
address of the corresponding publisher. In the application code, it is not necessary to explic-
itly communicate with the DNS; everything is done transparently provided that the environ-
ment variable DIM_DNS_NODE that contains the address (either IP or hostname) of the node
with the DNS is properly set. Additionally, the DIM handles conversion of data from the host
encoding to the network encoding. Thus, using the DIM to implement the communication is
extremely simple. The DIM services can be divided into 3 categories:

1. services that are requested by a subscriber only once

2. services that are updated regularly at given interval

3. services that are updated when a monitored quantity changes

Additionally, the clients can also send DIM commands to the servers. The following C++
code implements a sample command service:

class TestCommand: public DimCommand{
 void commandHandler(){
 cout << “ Received command: “ << getInt() << endl;
 }
public:
 TestCommand(): DimCommand(“ TEST_COMMAND”, “ I”);
};

To create a command service, one needs to subclass the DimCommand class and overload the
commandHandler method. This method is called whenever a subscriber sends a command.
In the constructor, a super class is created: the first parameter represents the unique service
name that will be used to identify the command service by the DNS and by subscribers. Sec-
ond parameter specifies the message format: the letter “I” stands for integer, the letter “F” for
float, and the letter “C” for character. It is possible to combine the letters to define structured
messages. Typically, in the commandHandler method, the sent command data is received
and processed. To receive an integer message, one can use the getInt method. There are
similar methods that receive floats and characters. A structured message can be obtained by
the getData method that returns a void pointer. To actually use the command service, an
instance of the TestCommand class must be created and the DIM server must be started:

int main(int argc, char **args){
 TestCommand command;
 DimServer::start(“ TEST_SERVER”);
 while(true){ pause(); }
}

The command service is running in the separate thread, therefore it is possible to pause the
execution of the main thread. The code that implements a subscriber of this command service
is even simpler:

int main(int argc, char **args){
 const int START_RUN = 1;
 DimClient::sendCommand(“ TEST_COMMAND”, START_RUN);
 return 0;

40

}

The command is sent by calling the static method sendCommand of the DimClient class.
First parameter identifies the command service; the other is the value that should be sent to
the service.

We have measured the performance of the DIM library in order to discover the optimal
message size. The test case consists of a publisher that publishes a command service and one
monitored service. A subscriber sends a command. When a publisher receives the command,
it updates the monitored service which triggers a subscriber to fetch the updated value. When
a subscriber receives the update message, it sends another command to a publisher. When this
cycle is repeated million times, the average data flow and number of exchanged messages per
seconds are calculated.

Size of the
message

Data flow
[kB/s]

Received
messages [s-1]

Size of the
message

Data flow
[kB/s]

Received
messages [s-1]

Size of the
message

Data flow
[kB/s]

Received
messages [s-1]

4 B 14 3700 256 B 923 3700 16 kB 8840 600

8 B 29 3700 512 B 1582 3200 32 kB 10390 300

16 B 58 3700 1 kB 3690 3700 64 kB 10667 170

32 B 116 3700 2 kB 3899 1900 128 kB 11035 90

64 B 233 3700 4 kB 7246 1800 255 kB 11179 40

128 B 456 3700 8 kB 7407 900
Table 1: Results of the DIM performance

The results for different sizes of messages are summarized in the Table 1. The measurements
have been performed on the local 100Mbit network, thus the maximum theoretical throughput
is 12800 kB/s. As the message size increases, the achieved data rate approaches the maximum
value. Some bandwidth is consumed by the overhead of the TCP/IP, some by the communica-
tion with the DNS. The relation between data flow and the message size is linear for the
smaller messages (roughly until 4 kB), for the larger messages, the increase in the data flow is
slower as the flow converges to maximum theoretical value. Number of exchanged messages
remains constant for messages smaller than 1 kB. The same tests have been measured for the
communication through the loopback device. In this case, the system exchanged 23000 mes-
sages per seconds if the message size was smaller than 8 kB, the maximum data rate of
260 MB/s was reached for 16 kB messages. Our results seem to be in a good accordance with
a similar measurement published by C. Gaspar2.

OUTLOOK

We have defined a test case that simulates a simple DAQ system. The system consists of one
master and several slave processes that are running on the distributed machines. The informa-
tion about slave processes involved in the system should be stored in the database or in the
XML file. The master process fetches this information and initializes all slave processes. The
master regularly broadcasts messages to all slaves; the slaves return the confirmation mes-
sage. The latency should be measured for different sizes of messages, for different number of
slaves, for different message frequencies. The test case should be used to compare suitability
of the C++, Java, and Python languages for developing the new DAQ software. The test case
should be evaluated during May 2011.

2 See http://dim.web.cern.ch/dim/DIM_Performance.pdf

41

Later in this year, the first test runs with the new hardware will be carried out, thus at least
minimal run control software will be required.

CONCLUSSION

The existing data acquisition system of the COMPASS experiment has been described. The
system suffers from a high dead time caused by the recent increases in the trigger rate. Devel-
opment of the new DAQ system based on a custom hardware has started. The new system
will require a new run control and monitoring software. The system will use the DIM library
to ensure the compatibility with other software systems of the experiment. The DIM library
has been tested; the message size should not excess 1 kB if the highest frequency of ex-
changed messages is required. In the near future, the suitable programming language will be
chosen and the development of the run control application will begin.

ACKNOWLEDGEMENT

This work has been supported by the MŠMT grants LA08015 and SGS 11/167.

BIBLIOGRAPHY

[1] P. Abbon et al. (the COMPASS collaboration): The COMPASS experiment at CERN, In:
Nucl. Instrum. Methods Phys. Res., A 577, 3 (2007) pp. 455–518. See also the COMPASS
homepage at http://wwwcompass.cern.ch

[2] Ch. Adolph et al. (the COMPASS collaboration): COMPASS-II proposal, CERN-SPSC-
2010-014; SPSC-P-340 (May 2010)

[3] T. Anticic et al. (ALICE DAQ Project): ALICE DAQ and ECS User's Guide, CERN
EDMS 616039, January 2006

[4] P. Charpentier, M. Dönszelmann, C. Gaspar: DIM, a Portable, Light Weight Package for
Information Publishing, Data Transfer and Inter-process Communication, Available at:
http://dim.web.cern.ch

[5] L. Fleková, V. Jarý, T. Liška, M. Virius: Využití databází v rámci fyzikálního experimentu
COMPASS, In: Konference Tvorba softwaru 2010, Ostrava: VŠB - Technická univerzita Os-
trava, 2010, ISBN 978-80-248-2225-9 pp. 68–75.

[6] B. Franek, C. Gaspar: SMI++ State Management Interface [online]. 2011. Available at:
http://smi.web.cern.ch

[7] V. Jarý: COMPASS Database Upgrade, In: Workshop Doktorandské dny 2010, Prague:
Czech Technical University in Prague, Czech Republic, November 2010, ISBN 978-80-01-
04644-9, pp. 95–104

[8] V. Jarý: DATE evaluation, In: COMPASS DAQ meeting, Geneva, Switzerland, 29 March
2011

[9] A. Král, T. Liška, M. Virius: Experiment COMPASS a počítače, In: Československý
časopis pro fyziku 2005, č. 5, str. 472.

[10] A. Mann, F. Goslich, I. Konorov, S. Paul: An AdvancedTCA Based Data Concentrator
and Event Building Architecture, In 17th IEEE-NPSS Real-Time Conference 2010, Lisboa,
Portugal, 24–28 May 2010

[11] T. Nagel: Cinderella: an Online Filter for the COMPASS Experiment. München: Tech-
nische universität München, January 2009.

[12] L. Schmitt et al.: The DAQ of the COMPASS experiment, In: 13th IEEE-NPSS Real Time
Conference 2003, Montreal, Canada, 18–23 May 2003, pp. 439–444

