
SOFTWARE DEVELOPMENT FOR THE COMPASS EXPERIMENT

Martin Bodlák

1
, Vladimír Jarý

1
, Igor Konorov

2
, Alexander Mann

2
, Josef Nový

1
,

Stephan Paul
2
, Miroslav Virius

1

1Fakulta jaderná a fyzikálně inženýrská, České vysoké učení technické v Praze

2Physik-Department, Technische Universität München
Vladimir.Jary@cern.ch

ABSTRACT:
The existing data acquisition system of the COMPASS experiment at CERN is a very
complex system that consists of a large number of components. Development of a new data
acquisition system has started; the upgraded system is based on the Field–programmable gate
arrays which reduces the amount of electronics and therefore increases the reliability of the
system. This paper focuses on the software part of the system. The hardware part performs the
readout of detectors and also controls the flow of the data. The software is responsible for the
control and monitoring of the system. The software is to be deployed on several distributed
nodes; the communication between the nodes uses custom protocol based on the DIM library.
The set of roles and behavior of the system has been defined; the behavior of the system is
implemented in the finite state machines. Minimal version of the system has been
implemented and tested. The system is currently being ported to the real hardware. It is
scheduled to have the system operational since the data taking in the year 2014.

KEYWORDS:
data acquisition, remote control, monitoring, state machines

INTRODUCTION OF THE COMPASS EXPERIMENT
The COMPASS is a high energy physics fixed target experiment at the Super Proton
Synchrotron at CERN built for study of the gluon and quark structure and the spectroscopy of
hadrons using high intensity muon and hadron beams, [1]. The scientific program was
approved by the CERN scientific council in 1997; it consists of the experiments with muon
and hadron beams. After several years of preparations and commissioning, the data taking
started in 2002. The experiment has recently entered into its second phase known as the
COMPASS-II which studies the generalized parton distributions, Primakoff scattering, and
Drell-Yan effect, [2].

At first, the existing data acquisition system of the COMPASS experiment is briefly
described and its performance and stability problems are analyzed. Next, the brand new data
acquisition system based on a custom hardware is introduced. This paper focuses on the
software part of this system that is responsible for the control and for the monitoring. The
proposed architecture that is based on the finite state machines and the DIM communication
library is presented. The minimal version of the proposal has already been implemented; the
first results of performance and stability tests are summarized. Finally, the following
development steps are discussed.

THE DATA ACQUISITION SYSTEM OF THE COMPASS EXPERIMENT
The data acquisition system of the COMPASS experiment takes advantages of the cycle of
the SPS accelerator that consists of the acceleration and the extraction period which is also
known as a spill. During the extraction period, the beam is delivered on the COMPASS target
and the secondary particles are produced. These secondary particles are detected by a system

of detectors that forms the COMPASS spectrometer. A collection of data that describes
particle trajectories, particle identification, particle interactions, and particle energies is
known as an event.

The data acquisition system consists of several layers, [11]. On the lowest layer, the
frontend electronics lie. The purpose of the frontend electronics is to preamplify and digitize
analogue data coming from the detector channels. Data from multiple channels are readout
and assembled by the concentrator modules that form the following layer of the system. The
readout is triggered by the signals from the Trigger Control System that also distributes event
identification and timestamp. By adding this metainformation to the raw data from detectors,
the subevents are created. The subevents are transferred to the readout buffer servers that
make use of the SPS cycle by buffering data in a custom made PCI cards called spillbuffers.
This allows reducing the average data rates to one third of the onspill rate. From the readout
buffers, the subevents are moved to the event builder servers that reorganize data to form the
complete events that are after some delay stored on the tapes in the CERN computing centre.

The DATE software package that has been originally developed for the ALICE experiment
performs the data acquisition tasks, [3]. From the functionality point of view, the DATE
package performs the data flow control, event building, load balancing, data quality
monitoring, run control, and interactive configuration. The package is designed to work in a
distributed network environment; each processing node must be compatible with the Intel x86
hardware architecture and must be powered by the GNU/Linux operating system with enabled
support for the TCP/IP stack.

During the first year of the data taking (i.e. 2002), 260 TB of data have been
recorded, [11]. This number increased to approximately 2 PB in 2010. Additionally, the
failure rate of the hardware also rises as the equipment gets older. As the PCI bus is a
deprecated technology, the replacing of the hardware would require development and
production of the PCI Express version of the spillbuffer cards. Instead, a development of a
brand new data acquisition system has started.

THE SOFTWARE FOR THE NEW DATA ACQUISITION SYSTEM
The new system is based on a custom Field–programmable gate array (FPGA) hardware that
performs the readout, the data flow control, and the event building, [10]. Thus, the software is
responsible only for the monitoring of the system and for the run control.

FPGA technologies have several advantages over a standard custom made hardware. The
high flexibility of the final product is the main advantage. Parameters of the physical
experiments are changing over time, thus it is essential to have a possibility of adjusting the
data acquisition system accordingly. Low cost in comparison with small series of custom
made electronics and fast developing cycle are another advantages of FPGA. On the other
hand, FPGAs have disadvantages too - mainly lower radiation hardness and high cost in
comparison with large series of the ASIC (application–specific integrated circuit). Lower
radiation hardness can be compensated by doubling of the components and implementation of
the self repair logic for data, for instance the parity control.

We have evaluated the possibility of using DATE as software for the new hardware
architecture, [7]. Unfortunately, the DATE package requires the x86 compatible architecture,
additionally, it is too complex software. Thus, we have decided to design and implement
brand new software. However, in order to keep the compatibility with tools for physical
analysis, the data format defined by the DATE package must remain unchanged. The software
will be deployed on several distributed nodes; the communication will be based on the custom
protocol and the DIM library which is also used by the DATE package for communication
with the Detector Control System. The system should support remote control and also define
multiple user roles. On the other hand, the control in the real time is not required. Many

unexpected problems may occur during the life cycle of the software project. Thus a risk
analysis and risk management is a very important part of the development, [9]. We have
estimated that a change of requirements is a highest risk in our case.

The DIM library provides asynchronous communication in a heterogeneous network
environment, [5]. The library is based on the TCP/IP protocols, it extends the client–server
paradigm with a concept of the DIM name server DNS. Each DIM service is identified by its
name. When a server wishes to publish a new service, it must register its name at the DNS.
When a client wishes to subscribe to a service, it must ask the DNS which server publishes
the required service. The DNS returns the address of the corresponding server and than the
communication continues directly between the client and the server. The exchange of
information with the DNS is done transparently by the library functions. The library is written
in the C language; however the interfaces to C++, Java, and Python languages also exist. We
have compared these interfaces and decided to use the C++ version, [8].

We have defined several roles in the proposal of the system, [6]. The relation between these
roles can be seen of Figure 1. The master node is the heart of the system; it acts as a mediator
between the user interface applications and the slave nodes that are used to control the custom
hardware. The master node receives the commands issued by the user interface applications
and forwards them to the slave nodes. The slave nodes receive and execute these commands
and send back the information about their state. The master node returns this information back
to the user interfaces. Remote control is possible thanks to the use of the DIM library.
Additionally, the master node guarantees that only one user can operate the system at the
same time. However, multiple user interfaces can receive the monitoring data simultaneously.
Each node can send messages to the Message logger node that stores these messages into the
online database. These messages can be viewed by the Message browser application. The
online database is also used to store the configuration of the system. The configuration is
loaded by the master node which distributes it to the other nodes by DIM services. In this
way, only the master node requires the database access. The user interfaces, the master node,
the Message logger, and the Message browser will be deployed on standard servers. On the
other hand, the slave nodes will be installed on the FPGA cards and will be powered by the
MICO32 softcore processor and specialized Linux distribution for microcontrollers.In order

Figure 1: Roles in the proposed software architecture

to facilitate the porting on the softcore processor, the slaves are implemented in the C++
language. The other nodes are implemented in the Qt framework that extends the object
model of the C++ language by the introspection, the guarded pointers, or the signal and slot
mechanism. Additionally, the Qt framework contains rich class library that covers the
networking, the database access, the multithreaded programming, 2D and 3D graphics, and
also the widgets for the graphical user interfaces. Moreover, the applications implemented in
the framework are portable between all the major platforms, namely Windows, Linux with
X11, and MacOS.

Message logger
The message logger is a console application implemented in the Qt framework. Its purpose is
to collect data directly from the master and the slave processes (not only redirected messages
from the master process). The communication is based on the DIM library (same as the
communication within the rest of the system). The Message logger subscribes to several DIM
services published by the master and the slave processes immediately after its startup and is
able to re-establish the subscription after a restart of a crashed slave process.

The Message logger receives two types of information: messages of the informative
character generated for example by an expected change of a state of some process and error
messages generated by several types of an unexpected behavior of any part of the whole
system. All these messages are transferred according to the custom transport protocol. Every
message received by the Message logger is parsed and analyzed. The Message logger then
adds some important information (e.g. a severity of the error) and stores the modified
messages into the database.

The informative message can result from a start of a slave process (if successful), start of a
new run, stop of a current run (if it is expected, i.e. after the maximum spill number is
reached), etc. Every message of this type is marked with the "INFO" severity. These messages
do not require further investigation or user intervention and serve only to store information
about important ongoing processes within the system.

The error message can result from an unexpected behavior of any part of the data
acquisition system (i.e. the hardware), or even from the control and monitoring software
itself. These messages are marked with the "WARNING", "ERROR", or "FATAL ERROR"
severity. The "WARNING" mark can be used for example when a slave process unexpectedly
crashes. As the master process attempts to restart it, it can then generate either an "INFO"
message in the case it succeeds, or an "ERROR" message or a "FATAL ERROR" message in
the case it fails.
The Message logger stores the following information into the database:

• Date and time of the occurrence: this information is obtained through the original
message as the transport protocol contains date and time information in the message
header.

• Sender ID: a unique identification number of the process that has generated the
message. The process can be then identified by this number in the database.

• Severity - the severity mark contains one of the following values: "INFO",
"WARNING", "ERROR", or "FATAL ERROR".

• Run number, spill number, and event number: numbers that help to identify the error
in a scope of the experiment. These numbers are periodically published by the master
process, or are included in the error message.

• Message text: main body of the error message. It helps to identify the error and allows
for the further investigation.

Message browser
The Message browser is a graphical user interface application developed in the Qt framework.
It utilizes the Qt's extensive set of GUI development libraries. It displays messages previously
stored into the MySQL database by the Message logger. It allows an interactive configuration
of multiple display filters. Applying those filters on the data allows obtaining the required
information.

The Message browser runs independently on the whole system, it does not need the DIM
library for communication as it only retrieves the data from the database. The application is
based on a model–view–controller software architecture with the model being all the
messages obtained from the database, the view being a table in the graphical user interface of
the application, and the controller being the filtering mechanism.

User-defined filters are set through multiple checkboxes (e.g. for displaying only messages
with the "ERROR" severity) and text fields (e.g. for displaying only messages within a given
range of run numbers). The Message browser updates the set of messages periodically from
the database. The previously set filters also automatically apply to the newly obtained
messages.

Because of the independence of the Message browser on the rest of the system, it would be
possible to use this application to display and filter data from any database table after
performing some minor changes in the source code. It means that it would also be possible to
use the Message browser with the current COMPASS data acquisition system based on the
DATE package.

State machine

One of the most important parts of the software development for the physics experiment is the
correct and the precise design of the state machines of all processes involved in the data
acquisition chain. State machines are used because of the need for precise knowledge of the
situation of every part of the system. The Figure 2 shows an example of the state machine
diagram that describes the behavior of the master node.

The master node is in the first state Turned off when it is not running at all. Directly after
the start, the master enters the state Starting. At first, it must initialize itself before it can go to
following state Waiting. In this state, the master node is initialized and waits for the next step.
In the fourth state Starting slaves, the master controls and monitors starting of the slave
processes. Another state Ready is defined as state in which all the slaves are on, responding
to the master and the master is ready to receive new commands from the user interface. In the
state Configured every node is prepared for start of the run. Test and Run are the states in
which system takes the data. Settings of the error tolerance and the logging are the only
difference between those two states. The Error is probably the most complex state; in this
state the error recovery logic must be described. Other two states Turning off slaves and
Closing are related to closing and finishing operation.

Figure 2: State machine describing the behavior of the master node

PERFORMANCE AND STABILITY TESTS
First tests of new DAQ architecture have been conducted during the winter shutdown of the
experiment. During these tests, the slave nodes have been deployed on 8 event builder
computers from the present data acquisition system, the master node, the Message Logger, the
Message Browser, and the user interface have been running on the computers in the control
room, [4]. All nodes have been connected by the Gigabit Ethernet.

The goal was to evaluate the capabilities of the new system and the DIM library. Most
importantly, the system is expected to be to exchange at least 200 messages of 1000 B per
second. The Figure 3 shows the number of the exchanged messages as a function of the
message size. This graph shows that the new system is able to almost fill entire network
bandwidth starting from the size of messages of approximately 4000 B. The overhead cost of
the network components, mainly switches, is the reason why the system could not fully utilize
the network bandwidth. The achieved amount of messages exchanged per second is roughly
90000 at the size of 1000 B, thus both requirements on the performance have been fulfilled.

RESULTS AND OUTLOOK
We have analyzed the existing data acquisition system of the COMPASS experiment. The
cost of scaling of the current data acquisition system is higher than the cost of scaling of the
system based on the FPGA. It has been decided to replace the existing system with a brand
new hardware and software architecture. The hardware would control the flow of data and
event building; the software would provide the run control and monitoring facilities. We have
evaluated the requirements on the software and prepared a proposal of the system that fulfills
these requirements. Using the finite state machines, we have defined the behavior of the
nodes. The system is distributed on several nodes; the communication is based on the DIM

Figure 3: Results of the performance tests

library. According to the proposal, we have implemented the nodes. The system has been
tested, the performance exceeds the requirements.

Currently, the communication with the hardware is being tested. These tests include
reading and writing data from and to the hardware registers. The microcontroller Linux needs
to be deployed on the softcore processor, thus we can start testing the slaves on the real
hardware. It is planned to test the fully functional prototype of the system during the technical
stop of the CERN accelerators in the year 2013 and put the system in the operation since the
year 2014.

ACKNOWLEDGEMENT
This work has been supported by the MŠMT grants LA08015 and SGS 11/167.

LITERATURE
[1] P. Abbon et al. (the COMPASS collaboration): The COMPASS experiment at CERN, In:
Nucl. Instrum. Methods Phys. Res., A 577, 3 (2007) pp. 455–518. See also the COMPASS
homepage at http://wwwcompass.cern.ch

[2] Ch. Adolph et al. (the COMPASS collaboration): COMPASS-II proposal, CERN-SPSC-
2010-014; SPSC-P-340 (May 2010)

[3] T. Anticic et al. (ALICE DAQ Project): ALICE DAQ and ECS User's Guide, CERN
EDMS 616039, January 2006

[4] M. Bodlák, V. Jarý, T. Liška, F. Marek, J. Nový, M. Plajner: Remote Control Room for

COMPASS Experiment, In: Konference Tvorba softwaru 2011, Ostrava: VŠB – Technická
univerzita Ostrava, 25-27 May 2011, ISBN 978-80-248-2425-3 pp. 1–9.

[5] P. Charpentier, M. Dönszelmann, C. Gaspar: DIM, a Portable, Light Weight Package for

Information Publishing, Data Transfer and Inter-process Communication, Available at:
http://dim.web.cern.ch

[6] V. Jarý: Towards a New Data Acquisition Software for the COMPASS Experiment, In:
Workshop Doktorandské dny 2011, Prague: Czech Technical University in Prague, Czech
Republic, November 2011, ISBN 978-80-01-04907-5, pp. 95–104

[7] V. Jarý: DATE evaluation, In: COMPASS DAQ meeting, Geneva, Switzerland, 29 March
2011

[8] V. Jarý, T. Liška, M. Virius: Developing a New DAQ Software for the COMPASS

Experiment, In: Konference Tvorba softwaru 2011, Ostrava: VŠB – Technická univerzita
Ostrava, 25-27 May 2011, ISBN 978-80-248-2425-3 pp. 35–41.

[9] B. Lacko: The Risk Analysis of Soft Computing Projects, In: Proceedings International
Conference on Soft Computing – ICSC 2004, European Polytechnical Institute Kunovice
2004. pp. 163–169

[10] A. Mann, F. Goslich, I. Konorov, S. Paul: An AdvancedTCA Based Data Concentrator

and Event Building Architecture, In 17th IEEE-NPSS Real–Time Conference 2010, Lisboa,
Portugal, 24–28 May 2010

[11] L. Schmitt et al.: The DAQ of the COMPASS experiment, In: 13th IEEE-NPSS Real Time
Conference 2003, Montreal, Canada, 18–23 May 2003, pp. 439–444

