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ABSTRACT: 
The existing data acquisition system of the COMPASS experiment at CERN is a very 
complex system that consists of a large number of components. Development of a new data 
acquisition system has started; the upgraded system is based on the Field–programmable gate 
arrays which reduces the amount of electronics and therefore increases the reliability of the 
system. This paper focuses on the software part of the system. The hardware part performs the 
readout of detectors and also controls the flow of the data. The software is responsible for the 
control and monitoring of the system. The software is to be deployed on several distributed 
nodes; the communication between the nodes uses custom protocol based on the DIM library. 
The set of roles and behavior of the system has been defined; the behavior of the system is 
implemented in the finite state machines. Minimal version of the system has been 
implemented and tested. The system is currently being ported to the real hardware. It is 
scheduled to have the system operational since the data taking in the year 2014. 
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INTRODUCTION OF THE COMPASS EXPERIMENT 
The COMPASS is a high energy physics fixed target experiment at the Super Proton 
Synchrotron at CERN built for study of the gluon and quark structure and the spectroscopy of 
hadrons using high intensity muon and hadron beams, [1]. The scientific program was 
approved by the CERN scientific council in 1997; it consists of the experiments with muon 
and hadron beams. After several years of preparations and commissioning, the data taking 
started in 2002. The experiment has recently entered into its second phase known as the 
COMPASS-II which studies the generalized parton distributions, Primakoff scattering, and 
Drell-Yan effect, [2]. 

At first, the existing data acquisition system of the COMPASS experiment is briefly 
described and its performance and stability problems are analyzed. Next, the brand new data 
acquisition system based on a custom hardware is introduced. This paper focuses on the 
software part of this system that is responsible for the control and for the monitoring. The 
proposed architecture that is based on the finite state machines and the DIM communication 
library is presented. The minimal version of the proposal has already been implemented; the 
first results of performance and stability tests are summarized. Finally, the following 
development steps are discussed. 
 

 

THE DATA ACQUISITION SYSTEM OF THE COMPASS EXPERIMENT 
The data acquisition system of the COMPASS experiment takes advantages of the cycle of 
the SPS accelerator that consists of the acceleration and the extraction period which is also 
known as a spill. During the extraction period, the beam is delivered on the COMPASS target 
and the secondary particles are produced. These secondary particles are detected by a system 



of detectors that forms the COMPASS spectrometer. A collection of data that describes 
particle trajectories, particle identification, particle interactions, and particle energies is 
known as an event. 

The data acquisition system consists of several layers, [11]. On the lowest layer, the 
frontend electronics lie. The purpose of the frontend electronics is to preamplify and digitize 
analogue data coming from the detector channels. Data from multiple channels are readout 
and assembled by the concentrator modules that form the following layer of the system. The 
readout is triggered by the signals from the Trigger Control System that also distributes event 
identification and timestamp. By adding this metainformation to the raw data from detectors, 
the subevents are created. The subevents are transferred to the readout buffer servers that 
make use of the SPS cycle by buffering data in a custom made PCI cards called spillbuffers. 
This allows reducing the average data rates to one third of the onspill rate. From the readout 
buffers, the subevents are moved to the event builder servers that reorganize data to form the 
complete events that are after some delay stored on the tapes in the CERN computing centre. 

The DATE software package that has been originally developed for the ALICE experiment 
performs the data acquisition tasks, [3]. From the functionality point of view, the DATE 
package performs the data flow control, event building, load balancing, data quality 
monitoring, run control, and interactive configuration. The package is designed to work in a 
distributed network environment; each processing node must be compatible with the Intel x86 
hardware architecture and must be powered by the GNU/Linux operating system with enabled 
support for the TCP/IP stack.  

During the first year of the data taking (i.e. 2002), 260 TB of data have been 
recorded, [11]. This number increased to approximately 2 PB in 2010. Additionally, the 
failure rate of the hardware also rises as the equipment gets older. As the PCI bus is a 
deprecated technology, the replacing of the hardware would require development and 
production of the PCI Express version of the spillbuffer cards. Instead, a development of a 
brand new data acquisition system has started. 
 

THE SOFTWARE FOR THE NEW DATA ACQUISITION SYSTEM 
The new system is based on a custom Field–programmable gate array (FPGA) hardware that 
performs the readout, the data flow control, and the event building, [10]. Thus, the software is 
responsible only for the monitoring of the system and for the run control. 

FPGA technologies have several advantages over a standard custom made hardware. The 
high flexibility of the final product is the main advantage. Parameters of the physical 
experiments are changing over time, thus it is essential to have a possibility of adjusting the 
data acquisition system accordingly. Low cost in comparison with small series of custom 
made electronics and fast developing cycle are another advantages of FPGA. On the other 
hand, FPGAs have disadvantages too - mainly lower radiation hardness and high cost in 
comparison with large series of the ASIC (application–specific integrated circuit). Lower 
radiation hardness can be compensated by doubling of the components and implementation of 
the self repair logic for data, for instance the parity control. 

We have evaluated the possibility of using DATE as software for the new hardware 
architecture, [7]. Unfortunately, the DATE package requires the x86 compatible architecture, 
additionally, it is too complex software. Thus, we have decided to design and implement 
brand new software. However, in order to keep the compatibility with tools for physical 
analysis, the data format defined by the DATE package must remain unchanged. The software 
will be deployed on several distributed nodes; the communication will be based on the custom 
protocol and the DIM library which is also used by the DATE package for communication 
with the Detector Control System. The system should support remote control and also define 
multiple user roles. On the other hand, the control in the real time is not required. Many 



unexpected problems may occur during the life cycle of the software project. Thus a risk 
analysis and risk management is a very important part of the development, [9]. We have 
estimated that a change of requirements is a highest risk in our case. 

The DIM library provides asynchronous communication in a heterogeneous network 
environment, [5]. The library is based on the TCP/IP protocols, it extends the client–server 
paradigm with a concept of the DIM name server DNS. Each DIM service is identified by its 
name. When a server wishes to publish a new service, it must register its name at the DNS. 
When a client wishes to subscribe to a service, it must ask the DNS which server publishes 
the required service. The DNS returns the address of the corresponding server and than the 
communication continues directly between the client and the server. The exchange of 
information with the DNS is done transparently by the library functions. The library is written 
in the C language; however the interfaces to C++, Java, and Python languages also exist. We 
have compared these interfaces and decided to use the C++ version, [8]. 

We have defined several roles in the proposal of the system, [6]. The relation between these 
roles can be seen of Figure 1. The master node is the heart of the system; it acts as a mediator 
between the user interface applications and the slave nodes that are used to control the custom 
hardware. The master node receives the commands issued by the user interface applications 
and forwards them to the slave nodes. The slave nodes receive and execute these commands 
and send back the information about their state. The master node returns this information back 
to the user interfaces. Remote control is possible thanks to the use of the DIM library. 
Additionally, the master node guarantees that only one user can operate the system at the 
same time. However, multiple user interfaces can receive the monitoring data simultaneously. 
Each node can send messages to the Message logger node that stores these messages into the 
online database. These messages can be viewed by the Message browser application. The 
online database is also used to store the configuration of the system. The configuration is 
loaded by the master node which distributes it to the other nodes by DIM services. In this 
way, only the master node requires the database access. The user interfaces, the master node, 
the Message logger, and the Message browser will be deployed on standard servers. On the 
other hand, the slave nodes will be installed on the FPGA cards and will be powered by the 
MICO32 softcore processor and specialized Linux distribution for microcontrollers.In order 

Figure 1: Roles in the proposed software architecture 



to facilitate the porting on the softcore processor, the slaves are implemented in the C++ 
language. The other nodes are implemented in the Qt framework that extends the object 
model of the C++ language by the introspection, the guarded pointers, or the signal and slot 
mechanism. Additionally, the Qt framework contains rich class library that covers the 
networking, the database access, the multithreaded programming, 2D and 3D graphics, and 
also the widgets for the graphical user interfaces. Moreover, the applications implemented in 
the framework are portable between all the major platforms, namely Windows, Linux with 
X11, and MacOS. 
 

Message logger 
The message logger is a console application implemented in the Qt framework. Its purpose is 
to collect data directly from the master and the slave processes (not only redirected messages 
from the master process). The communication is based on the DIM library (same as the 
communication within the rest of the system). The Message logger subscribes to several DIM 
services published by the master and the slave processes immediately after its startup and is 
able to re-establish the subscription after a restart of a crashed slave process. 

The Message logger receives two types of information: messages of the informative 
character generated for example by an expected change of a state of some process and error 
messages generated by several types of an unexpected behavior of any part of the whole 
system. All these messages are transferred according to the custom transport protocol. Every 
message received by the Message logger is parsed and analyzed. The Message logger then 
adds some important information (e.g. a severity of the error) and stores the modified 
messages into the database. 

The informative message can result from a start of a slave process (if successful), start of a 
new run, stop of a current run (if it is expected, i.e. after the maximum spill number is 
reached), etc. Every message of this type is marked with the "INFO" severity. These messages 
do not require further investigation or user intervention and serve only to store information 
about important ongoing processes within the system. 

The error message can result from an unexpected behavior of any part of the data 
acquisition system (i.e. the hardware), or even from the control and monitoring software 
itself. These messages are marked with the "WARNING", "ERROR", or "FATAL ERROR" 
severity. The "WARNING" mark can be used for example when a slave process unexpectedly 
crashes. As the master process attempts to restart it, it can then generate either an "INFO" 
message in the case it succeeds, or an "ERROR" message or a "FATAL ERROR" message in 
the case it fails. 
The Message logger stores the following information into the database: 

• Date and time of the occurrence: this information is obtained through the original 
message as the transport protocol contains date and time information in the message 
header. 

• Sender ID: a unique identification number of the process that has generated the 
message. The process can be then identified by this number in the database. 

• Severity - the severity mark contains one of the following values: "INFO", 
"WARNING", "ERROR", or "FATAL ERROR". 

• Run number, spill number, and event number: numbers that help to identify the error 
in a scope of the experiment. These numbers are periodically published by the master 
process, or are included in the error message. 

• Message text: main body of the error message. It helps to identify the error and allows 
for the further investigation. 

 

 



 

 

Message browser 
The Message browser is a graphical user interface application developed in the Qt framework. 
It utilizes the Qt's extensive set of GUI development libraries. It displays messages previously 
stored into the MySQL database by the Message logger. It allows an interactive configuration 
of multiple display filters. Applying those filters on the data allows obtaining the required 
information. 

The Message browser runs independently on the whole system, it does not need the DIM 
library for communication as it only retrieves the data from the database. The application is 
based on a model–view–controller software architecture with the model being all the 
messages obtained from the database, the view being a table in the graphical user interface of 
the application, and the controller being the filtering mechanism.  

User-defined filters are set through multiple checkboxes (e.g. for displaying only messages 
with the "ERROR" severity) and text fields (e.g. for displaying only messages within a given 
range of run numbers). The Message browser updates the set of messages periodically from 
the database. The previously set filters also automatically apply to the newly obtained 
messages. 

Because of the independence of the Message browser on the rest of the system, it would be 
possible to use this application to display and filter data from any database table after 
performing some minor changes in the source code. It means that it would also be possible to 
use the Message browser with the current COMPASS data acquisition system based on the 
DATE package. 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

State machine 

One of the most important parts of the software development for the physics experiment is the 
correct and the precise design of the state machines of all processes involved in the data 
acquisition chain. State machines are used because of the need for precise knowledge of the 
situation of every part of the system. The Figure 2 shows an example of the state machine 
diagram that describes the behavior of the master node.   

The master node is in the first state Turned off when it is not running at all. Directly after 
the start, the master enters the state Starting. At first, it must initialize itself before it can go to 
following state Waiting. In this state, the master node is initialized and waits for the next step. 
In the fourth state Starting slaves, the master controls and monitors starting of the slave 
processes.  Another state Ready is defined as state in which all the slaves are on, responding 
to the master and the master is ready to receive new commands from the user interface. In the 
state Configured every node is prepared for start of the run. Test and Run are the states in 
which system takes the data. Settings of the error tolerance and the logging are the only 
difference between those two states. The Error is probably the most complex state; in this 
state the error recovery logic must be described. Other two states Turning off slaves and 
Closing are related to closing and finishing operation. 
 

 

 

Figure 2: State machine describing the behavior of the master node 



PERFORMANCE AND STABILITY TESTS 
First tests of new DAQ architecture have been conducted during the winter shutdown of the 
experiment. During these tests, the slave nodes have been deployed on 8 event builder 
computers from the present data acquisition system, the master node, the Message Logger, the 
Message Browser, and the user interface have been running on the computers in the control 
room, [4]. All nodes have been connected by the Gigabit Ethernet. 

The goal was to evaluate the capabilities of the new system and the DIM library. Most 
importantly, the system is expected to be to exchange at least 200 messages of 1000 B per 
second. The Figure 3 shows the number of the exchanged messages as a function of the 
message size. This graph shows that the new system is able to almost fill entire network 
bandwidth starting from the size of messages of approximately 4000 B. The overhead cost of 
the network components, mainly switches, is the reason why the system could not fully utilize 
the network bandwidth. The achieved amount of messages exchanged per second is roughly 
90000 at the size of 1000 B, thus both requirements on the performance have been fulfilled. 
 

RESULTS AND OUTLOOK 
We have analyzed the existing data acquisition system of the COMPASS experiment. The 
cost of scaling of the current data acquisition system is higher than the cost of scaling of the 
system based on the FPGA. It has been decided to replace the existing system with a brand 
new hardware and software architecture. The hardware would control the flow of data and 
event building; the software would provide the run control and monitoring facilities. We have 
evaluated the requirements on the software and prepared a proposal of the system that fulfills 
these requirements. Using the finite state machines, we have defined the behavior of the 
nodes. The system is distributed on several nodes; the communication is based on the DIM 

Figure 3: Results of the performance tests 



library. According to the proposal, we have implemented the nodes. The system has been 
tested, the performance exceeds the requirements. 

Currently, the communication with the hardware is being tested. These tests include 
reading and writing data from and to the hardware registers. The microcontroller Linux needs 
to be deployed on the softcore processor, thus we can start testing the slaves on the real 
hardware. It is planned to test the fully functional prototype of the system during the technical 
stop of the CERN accelerators in the year 2013 and put the system in the operation since the 
year 2014. 
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