
IMPROVING THE DATA MODEL OF PCR SOFTWARE

Petr Fiala, Michal Rost1, Vladimír Španihel
CTU Prague, Faculty of nuclear sciences and physical engineering

ABSTRACT:
The purpose of this study is to improve an existing data model for a real-time biomedical device
in order to store and manage more effectively data incoming from the device. Because the
standard approach deals with collections of class instances, it is not able to store data uniformly.
Moreover, adding new properties to the existing model is quite a complex problem. On the other
hand, uniform data storage comes with the problem of effective selection of subsets from the
data. This paper presents an architecture and implementation of our approach to solve the
mentioned problems as well as the results from its benchmarks.

KEYWORDS:
thermocycler, PCR, C++, Qt framework

INTRODUCTION

Our team involves [2] in the development of an application for thermocycler device. This
kind of device is used for performing Polymerase chain reaction (PCR) [4], during which the
patient's DNA is being replicated. The replicated DNA is exposed to a beam of laser light, and,
finally, the fluorescent light emmited from DNA is collected by photomultiplier and sent to the
application for a subsequent analysis.

At present, despite the fact that original requirements for application have almost been
implemented, new requirements are continuously emerging. This situation results in a continual
need for change of the application's data model. Thus, we were motivated to redesign it in order
to be more robust to changes in requirements.

Initial situation

Up to now, every change in the original data model comprised considerable changes in its
design and implemention. If, for example, a new attribute is to be added to the existing data
model; several tasks have to be performed. First, the UML model must be redesigned. Second,
the source code must be reimplemented. Next, import/export of an attribute from/to all supported
formats must be implemented. Finally, the newly implemented attribute must be connected to
other parts of the application including the GUI.

For instance, Figure 1 shows an UML class diagram of results. Results are data measured
by the device and sent to the application. These data comprise: current temperature inside the
device, current rotation speed of the carousel, and current fluorescence of every sample. During
the time results are collected from the device and stored in an appropriate data list: temperature
data list, rotation data list, or fluorescence data list. As shown in Figure 1, each set of data,
collected during a single run of the device (RunDataSet), contains more than one fluorescence
data list. It is because fluorescence is collected for all samples currently placed in the device.

1 Corresponding author; rostmich@fjfi.cvut.cz

After implementation of the results package, new requirement has been formulated.
According to this requirement, each sample can be exposed to laser beams with different
wavelength (color). If the requirement was added to the original model (figure 1), there would be
various things to change. At first, the RunDataSet would hold a matrix of fluorescence lists; that
means one fluorescence list for each sample and each laser. Furthermore, export and import of
fluorescence would have to be rewritten. And last but not least, the GUI and communication with
the device would have to be updated in order to support the required feature.

Figure 1: UML class diagram of results package

1. REQUIREMENTS FOR IMPROVEMENT OF THE DATA MODEL

 After analyzing the problem, five requirements to be implemented were formulated in
order to improve the original data model:

� Robust to changes in requirements – notable changes in requirements must produce minor
changes in the implementation of the data model

� Unity – concentrate the data of same type at the same place

� Unified interface – provide all types of data with same interface in order to simplify and

consolidate their management
� Improved metadata management – store all necessary metadata directly with

corresponding data

� Improved accessibility – fast access to the selected subset of the data from all parts of the
application

2. ARCHITECTURE OF THE PROPERTIES PACKAGE

2.1. Analytical model

 Based on the requirements an analytical model of a package have been developed referred
as properties (Figure 2). The structure of the package follows the idea that each attribute can be
stored in instance of one class: Value. All attribute's metadata like information about its type, its
physical quantity, its valid range etc. are stored in a corresponding instance of class Property. An
instance of class Item represents one observation on a certain reality, while an instance of
ItemList represents a list of these observations. In other words, the instance of ItemList is a table
where the rows represent different items, and columns represent different properties.

Figure 2: Analytical class diagram of properties package

2.2. Implementation model

Figure 3: Implementation class diagram of properties package

After formulating the analytical model, we designed an implementation class diagram in
order to prepare the module for application.

As shown in Figure 3, the analytical class ItemList is represented by an abstract class
AbstractItemList, which has two concrete implementations: ItemList and ItemPointerList. While
instances of the ItemList hold their own items, instances of the ItemPointerList hold only pointers
to items of other lists. Thus, ItemPointerList is able to store results of selections from some
AbstractItemList.

The analytical class Item is represented by an abstract class with two implementations:
Item and SingleItem. Instances of the class Item can be owned only by instances of the class
ItemList, and they share the same list of properties (an instance of PropertyList). On the other
hand, SingleItem represents a standalone list of values of some properties.

As the application is developed in the C++ [1, 7] language and Qt framework [3, 6], we
have utilized a Qt's QVariant class, which has been utilized for store a value of various data types
in a one variable and provides conversions to standard C++ data types.

2.3. Selecting subsets from the ItemList

The properties package shown in Figure 3, meets first four requirements that have been
formulated in the section 1. However, the last requirement still has to be applied. Since the data
are stored uniformly in the instance of ItemList as instances of the Item, a requirement to
selecting subsets from this data arises. An example should be made of the results package again.
If all fluorescence data were stored in one instance of the ItemList, there a problem would arise
with selecting only those fluorescence that correspond to the given sample and laser.

The standard approach to selection of a subset from the list comprises: iteration through
all items in the list, testing a specific condition in each iteration, and passing current item to the

subset if the tested condition is met. This operation has linear complexity, but it has to be
performed for every sample and every laser every time the new fluorescence is received; so the
final complexity is O(k*m*n), where k is the number of items, m is the number of samples, and n
is the number of lasers. Moreover, it is necessary to split flourescence data to subsets after each
measurement is performed, and since the time available between two measurements is limited,
selection of subsets has to be effective. In order to speed up the selection of subsets from
measurements, the following assumptions and requirements have been accepted.

Assumptions:

� All measurements are stored in an ordered list; the last measurement is in the bottom of
the list

� All measurements should be split to m different subsets by m different values of one
ordinal property

� All measurements should be split to m1 · m2 ·…· mn different subsets by m1, m2, ..., mn
different values of n ordinal properties

Requirements:
� All yhr split subsets must be disjunct
� Each measurement should belong to exactly one subset
� Each measurement should be processed at once
� Finding the right subset for a given measurement must be effective

Figure 4: Implementation class diagram with ItemSplitter class

Based on assumptions and requirements a class ItemSplitter has been designed (Figure 4).
ItemSplitter holds an instance of QMap [6] in which individual subsets (instances of
ItemPointerList) are stored. Keys for the mentioned QMap are instances of class NDKey which
represents an n-dimensional key.

When a new instance of ItemSplitter is created, a pointer to the original ItemList object
has to be specified as well as indices (or names) of properties that will be used for splitting the
original ItemList. Then the ItemList object is iterated for once and its items are sorted to
appropriate subsets.

Figure 5: Process of finding of correct subset for an item

After a new measurement is performed by the device, the result is passed as the new item

into the corresponding instance of the ItemList, and the instance of ItemSplitter finds the right
subset and adds a pointer to the mentioned item to it. This process is described in Figure 5. Since
the complexity of finding key in QMap with n items is O(log(n)) [6], the complexity of the
previously mentioned process is O(n + log(m1 · m2 ·…· mn)) where n is the number of properties
used for splitting, and mi is the number of different values of the property i.

In case the instance of ItemSplitter is no longer needed, it can be deleted without affecting
the original ItemList.

DISCUSSION

Implementing properties for the results package

 After the properties package has been created, it has been used for the reimplementation
of the result package; its new class diagram can be seen in Figure 6.
 All data are now stored in instances of ItemList, so they share the same interface. All
functionalities like XML import/export or reporting are written at once for ItemList. Futhermore,
if a new functionality were required, it would be written also at once.
 If, for example, a new attribute is to be stored together with fluorescence, the new
property can be added to the fluorescence list, and there is no need to change the design, or

reimplement functionalities like import/export of fluorescence.
 All metada data like physical quantities or valid ranges for values are stored together with
the properties in the ItemList at once for all items.
 Before the device is started, an instance of ItemSplitter is created in order to split the
measured fluorescence by indices of samples and indices of lasers. When a new measurement is
performed, the only operation that has to be carried out is finding the corresponding subset for
the measured item. So, the complexity of splitting is O(log(n · m)) where n is the number of
samples and m is the number of lasers.

Figure 6: Class diagram of reimplemented results package

Testing the result package

 The effectivity of message processing was tested with QTestLib [6]. Using this library a
benchmark with 1024 iterations was performed for the prepared set of fluorescence data. The
average time needed for parsing message from the device, storing it in the ItemList, and splitting
it to the appropriate subset was calculated as 0.111 milliseconds. This result is acceptable for our
purposes.

CONCLUSION
We have designed and implemented a package properties which has allowed us to simplify the
original data model of PCR application. Now, all data can be stored and managed in a more
uniform way and can be accessed in reasonable time. This approach can be utilized in
development of other applications that are designed in our company.

ACKNOWLEDGEMENT
Creation of this paper was partially supported by grants: MŠMT LA08015 and SGS 11/167.

LITERATURE
[1] Dirk L.; Mejzlík P.; Virius M. Jazyky C a C++ podle normy ANSI/ISO. Praha: Grada
Publishing 1999. ISBN 80-7169-631-5
[2] Fiala P., Rost M., Španihel V., Virius M. Development of Modern Application for In-Vitro

diagnostics. Ostrava, 2011.
[3] Fiala P., Rost M., Španihel V., Virius M. Knihovna Qt4, prostředí QtCreator a možnosti

jejich využití. Ostrava, 2011.
[4] Hunt M. Real Time PCR. [online]. 2010-07-01, [cit. 2011–03–30]. Available on WWW:
<http://pathmicro.med.sc.edu/pcr/realtime-home.htm>.
[5] Pecinovský R. Návrhové vzory. Brno: Computer Press 2007. ISBN 978-80-251-1582-4
[6] Qt Project. Qt Reference Documentation. [online]. 2012-03-06, [cit. 2012–03–30]. Available
on WWW: <http://qt-project.org/doc/qt-4.8/>.
[7] Virius M. Pasti a propasti jazyka C++. Brno: Computer Press 2005. ISBN 80-251-0509-1

